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We demonstrate how to construct fractals which are generated by a combination
of a cellular automaton and a substitution. Moreover, if the substitution and the
cellular automaton exhibit certain symmetry features, the fractal will inherit these
symmetries.
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1 Introduction

It is a well known fact that certain cellular automata can generate fractals 7 ,8 ,9, 14 ,15.

These fractals can be described in terms of hierarchical iterated function systems12,

graph directed constructionsn1 or as a mixed self-similar set 2 .
In this note we consider cellular automata which have certain symmetries. After

the introduction of some basic concepts and formalism about substitutions, fractals
and cellular automata in Sections 2 and 3, we shall show in Section 4 how to
construct fractals generated by a cellular automaton such that the fractal inherits
the symmetries of the cellular automaton.

2 Substitutions and fractals

In this section we introduce the concept of a substitution which is needed for our ap-
plications. We discuss how substitutions generate a compact subset which exhibits
a hierarchical self-similar structure, and thus is usually a fractal set.

We will consider sequences (fj)jez, where fj belongs to a finite commutative
ring R with 0 and 1. It will be useful to represent this sequence as a formal Laurent
series with coefficients in T, as f or as

f = f(X) = Z x.
jcZ

The set of all such Laurent series will be denoted by 7(X). The support supp(f)
of f G R(X) is the set {j I fj $ 0}. f is called a Laurent polynomial if supp(f)
is finite. The set of all Laurent polynomials is denoted by 7IZ(X). If supp(f) C N
and is finite, then f is called a polynomial. The set of polynomials with coeffcients
in 7 is denoted by R[X].

The set of all maps a : 7 -+ 7 equipped with the addition and composition is
denoted by Abb(7R). With 0 we denote the map r ' 0 and with 1 we denote the
identity map r -* r . The subset of all maps a :7? -R R? with a(0) = 0 is denoted
as Abbo(R). If a c Abb(), then a induces a map, also denoted by a, from 7R(X)
to 7?(X) which is defined as a(f)(X) = Zjcz a(fj)XJ.

For k E N the set {0,..., k - 1} is denoted by [k].
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A k-substitution transforms a sequence (fj)jEz into a new sequence by replacing
each element fj by a string of k elements 6o(fj)6i(fj) ... -1(fj), where j E
Abb(7). Here follows the formal

Definition 2.1 A k-substitution 6 is a k-tuple 6 = (6L)I€[k] E (Abb(7R))k which
defines a map 6 on 7(X) given by

k-1

W) = ZXI (f)(Xk),
1=0

where j(f)(X) = Ejz61(fj)Xj. If 6 E (Abb 0 (S))k, i.e., when 0 is replaced by a
string of k 0 's, then is callea a regular k-substitution.

Remark 1.A k-substitution = (60)/[k] is also defined by a polynomial P (X)
,jXj e Abb(7Z)[X] of degree less than k and we write (f) = PC(X) o f(Xk),

where the product is the product induced by the composition of maps and the
coefficients fj of f(X) are considered as constant maps r -+ fj. The polynomial
P is called the substitution polynomial.
2.If Q(X) E R[X] is a polynomial of degree less than or equal to k - 1, then

Q(f) = Q(X)f(Xk) defines a k-substitution with 6j(r) = qjr.
3.If I1 and 62 are k-substitutions, respectively, and if P6, (X) and P 2 (X) denote
the respective substitution polynomials, then 6 = 1 o 2 is a k2 substitution with
substitution polynomial PC(X) = P 1 (X) o P 2 (Xk).

We also need to consider two-dimensional sequences (gij)i,jGz with gij C '.
The corresponding formal Laurent series representation is

g = f(X,Y) = gijx Y3 ,

JZ(X, Y) is the set of all such two-dimensional Laurent series (sequences). Like for
the one-dimensional case, we say that g(X, Y) is a Laurent polynomial if gij = 0
almost everywhere. Like for the one-dimensional case, two-dimensional sequences
can be transformed by a two-dimensional (k x k)-substitution, which replaces each
symbol gij by a (k x k)-array of symbols in RZ. Formally:

Definition 2.2 Let E= (l,m)me[k] C (Abb(7Z))kxk. The map E : 7Z(X,Y) --

RT(X, Y) defined as
k-1

(g) = E Xlym ,m(g)(Xkyk)
I,m=O

is called a (k x k)-substitution. It is called regular if E G (Abb 0 (R))kXk.
Let us agree here, that in two-dimensional sequences and arrays, and in the

corresponding graphical representations, the first index, which is possibly associated
to the symbol X in formal Laurent series, increases along a horizontal axis which
is oriented from the left to the right; while the second index, possibly associated to
the symbol Y, increases along a vertical axis which is oriented from top to bottom.

Remark 1.If E is a regular (k x k)-substitution, then E(R(X)) 9 R(X). In
other words, the set of Laurent polynomials is invariant under regular k- or (k x k)-
substitutions.
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2.If Z1 and E2 are (k x k)-substitutions, respectively, and PEI , P_,2 the respective

substitution polynomials, then i oZ2 is a (k 2 x k2 )-substitution with substitution

polynomial PEI 022 (XY) = Pn1 (X,Y) o P 2 (Xk, yk).

In order to draw the connection between fractals and substitutions we define a

graphical representation of elements in 7,(X) or in 7,(X, Y). We only need to

introduce the graphical representation for elements in TZc(X, Y), since any Laurent

series in 7?(X) has a natural counterpart in R(X, Y).

Let (71(W), dH) denote the set of non-empty compact subsets of R2 , where dH

is the Hausdorff distance induced by the Euclidian metric (or any other equivalent

metric) on R2 . Since R2 is a complete metric space, so is (7, dH) 5 '6 .

Definition 2.3 Let I(i,j) = [i,i + 1] x [j,j + 1] . Then the map G 7.,(X,Y) --

74(R 2 ) U {0} defined as

G(g) = {I(i,j) Igiji 0 01

is called graphical representation.
I(i,j) in the definition above can be considered as a "highlighted pixel" at

location (i, j) on a graphical display which coincides with the 2 -plane (as agreed:

y-axis positively oriented downwards).

Remark 1. G(g) = 0 if and only if g = 0.

2.Any map 7 : R? \ {0} -- 74( 2 ) induces another graphical representation G 7 by
defining G,(g) = U{(i,j) + -y(gij) I gij $ 0}. This corresponds to " non-square
pixels", where the pixel-shape may depend on gi,j.
3. The concept of graphical representation is quite general: when S is a ring with 0

and 1, then so is 7Z = SD, with 0R = (0,0,0,...,0) and 11 = (1, 1, 1...,) (both

07Z and 11z have D components). So it is possible to speak about the graphical
representation of a two-dimensional sequence with values in 7 = SD, where gi,j
is just an element of SD.

The connection between fractals and substitutions is provided by the following

theorem.

Theorem 2.4 8 Let E : T?(X, Y) -4 7Z(X, Y) be a regular (k x k)-substitution such
that for all r 0 0, there are i,j such that i~j(r) :0 0. If g E Rc(X,Y) and g $ 0,
then the sequence

G 1G(E(g)nEN

is a Cauchy sequence in (71, dH).
The proof relies on two facts. Firstly, EE being regular maps Laurent polynomials on
Laurent polynomials. Thus the above sequence is indeed in 7-(1R2). Secondly, again

due to the regularity of E one has -G(E(g)) C G(g) for all Laurent polynomials
different from 0. These two observations conclude the proof.

Remark 1.The limit of the above Cauchy sequence is denoted by A(g).
2.If G. is another graphical representation, then the above theorem remains true.

Moreover, the limit set does not depend on the graphical representation.
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3.For g C RZc(X,Y), g ; 0, one has

A(g) = U A(gij) + (i,j),

{(i,J) I gijo0}

where A(gi,j) + (ij) is the translated limit set of the graphical representation of
g(X, Y) = gi,j.

Example 1.Let 7. Z2 and let the 3-substitution be given by the substitution
polynomial P (X) = id + id X 2, where id denotes the 1 in Abb(RT). The limit
set A(1), i.e. the limit of the properly rescaled graphical representation of the
sequence ... 0001000... under the substitution 0 '-+ 000, 1 F4 101 is the triadic

Cantor set.
2.Let 7 = Z2 and define the (2 x 2)-substitution by the substitution polynomial
P=(X,Y) = id + idY + idXY. The limit set A(1), i.e. the limit of the properly
rescaled graphical representation of the sequence g(X, Y) = 1 (a single value 1 at

00 10
(i, j) = (0, 0)) under the substitution 0 -+ 0 0' 1 ' is the Sierpinski triangle.

3 Cellular automata

Substitutions transform a sequence into another sequence. So do other mechanisms
known as cellular automata. We review briefly some essentials which we need
further.

Let S denote a commutative ring with 0 and 1. According to Hedlund1 ° , a
cellular automaton with states in the ring S (actually it is only necessary that S
is a finite set) is a continuous map A : S(X) -+ S(X) which commutes with the
shift map. This implies that every cellular automaton A is given by a local rule
0: SN

-
±N2 -+ S, where N 1 ,N 2 E N and A is defined as

A(f) = E (fj-N, fj-Nl+ 1,... , fj+N2 -1, fj+N2)X j.

jEz

This means that the j-th element of A(f) is obtained from f as a function 0
of the f-elements in a fixed finite neighbourhood of j. For a cellular automaton
A : S(X) -+ S(X) and an initial configuration f E S(X) we define the orbit OA(f)
of f (w.r.t. A) as the two-dimensional sequence defined on Z x N, where row t c N
displays the t-th iterate of A on f. Formally, and in Laurent series notation:

00

OA(f)(X, Y) = At (f(X))Y t .
t=O

In this note we are dealing with cellular automata A = Ap with local rule 0 : S' --
S such that

A¢(f)(X) = Z0(fj-D+l, fj) X j .

jEz

Of particular interest are linear cellular automata1 , i.e., automata with a S-linear
local rule ¢ : SD -+ S. In this case the cellular automaton is also described by the
multiplication with a "local-rule"-polynomial R(X), i.e., Ao(f) = R(X)f(X).
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We are particularly interested in cellular automata with the additional property

of being k-Fermat9 . They provide a framework to explain the existence of fractals

which are generated by cellular automata.

For k E N \ {0} we define the k-th power 7rk : $(X) --* S(X) as 7k(f)(X) =

fj X j k = f(Xk), i.e., 7rk "inflates" f by inserting (k-1) O's between the elements

of the sequence f (we could call this "k-inflation").

We now recall the concept of a cellular automaton having the k-Fermat property.

This implies that row k of the orbit of a "k-inflated" initial sequence equals the

"k-inflation" of row 1 of the orbit of the "non-inflated" initial sequence, no matter

what the initial sequence might be. Formally:

Definition 3.1 1,9 A cellular automaton A : $(X) -+ S(X) is called k-Fermat if

(Ak - 7rk)(f) = (Trk o A)(f) holds for all f E S(X).

Remark 1.If A is a k-Fermat cellular automaton, then the sequence 0 is a fixed

point of A. Therefore A(Sc(X)) C So(X) for a k-Fermat cellular automaton.

2.If A is a linear cellular automaton defined by the Laurent polynomial R(X),

then A is k-Fermat if and only if R(X)k = R(Xk).

Example 1.Let S = Fp-, the field with pl elements and of characteristic p (p

being a prime number). Then any linear cellular automaton is p'-Fermat.

2.Let S = Zp-, p a prime number. A linear cellular automaton is p-Fermat if its

local rule is a Laurent polynomial R(X) of the form R(X) = Q(X)PO- I , where

Q(X) is a Laurent polynomial.

3.Let S = Z6, then R(X) = 3 + 4X defines a 2-Fermat linear cellular automaton
and R(X) = 2 + 4X defines a 3-Fermat linear cellular automaton.

4.Let S = Z 5 . Then the local rule ¢ : Z- * Z5 defined by the table with entries
¢(x,y)

x\y 0 12 3 4

0 01234
1 10423
2 23041
3 34102
4 42310

induces a (nonlinear) 2-Fermat cellular automaton. In fact, it can be shown that

there are 512 different local rules : -- Z 5 which define a 2-Fermat cellular
automaton on Z 5 (X). Which demonstrates that not all k-fermat cellular automata

have to be linear cellular automata.

We now present a generic example which illustrates a general property of k-

Fermat cellular automata. Consider the cellular automaton with S = Z3 and local
rule R(X) = 1 + 2X + X 2 C Z3[X]. It is 3-Fermat. Part of the orbit OA(1) is

shown below:
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row 00 ... 0001000000000000000000000000000000 ...
row 01 ... 0001210000000000000000000000000000 ...
row 02 ... 0001101100000000000000000000000000 ...
row 03 ... 0001002001000000000000000000000000 ...

row 04 ... 0001212121210000000000000000000000 ...
row 05 .. 0001100000001100000000000000000000 .

row 06 .. 0001001000001001000000000000000000 ...

row 07 ... 0001211210001211210000000000000000 ..

row 08 ... 0001102201101102201100000000000000 ...
row 09 ... 0001000000002000000001000000000000 ..

row 10 .0001210000002420000001210000000000 ...
row 11 .0001101100002202200001101100000000 ...

row 12 • 0001002001002001002001002001000000 ...

row 13 • 0001212121212121212121212121210000 ...

Row 3n + l, 1 C {0,1,2} in this orbit, i.e. the sequence A3n+1(1), can be obtained
from row 3n as A'(A 3"(1)). By the 3-Fermat-property, row 3n is a "3-inflated"
version of row n (say ... zabcd ...), as given by the top sequence in the following
scheme:

row3n ...OOz 0 0 a 0 0ab 0 00 c 0 0 d 0 0...
row3n+1-.- 2zz a 2a a b 2b b c 2c c d 2d d...
row 3n+2.. a+za+z 0a+ba+b 0b+cb+c0c+dc+d0 ...

(1)
Also represented in this scheme are rows 3n + 1 and 3n + 2, obtained by application
of the rule R(X). Observe from this scheme that knowledge of two successive
elements in row n, say (a, b), is sufficient to determine all highlighted values. Now
define the substitution TI' which replaces the pair (a, b) by a (3 x 3)- array of pairs,
as follows:

[ (0, b) (b, 0) (0,0) 1
(a, b) F-+ (a, b) (b, 2b) (2b, b)

(O,a+b) (a+b,a+b) (a+b, 0)]

The last components of the pairs in this array are given by the elements of the
3 x 3- array indicated in the above three sequences (1); the first components are the
elements that immediately precede them. It is now clear that, if we replace each
element (say b) in row n by the corresponding last components in row 1 (1 = 0, 1, 2)
of the substitution array, we produce row 3n + 1. In that way, the orbit above
corresponds to the last elements of the pairs in the arrays obtained by iterating the
substitution starting from the sequence of pairs ... (0, 0) (0, 1) (1, 0) (0, 0)... (i.e.,
row 0 rewritten as pairs in which the last components correspond to the elements
of row 0, and the first components to the corresponding preceeding elements). We
show the first step of the iteration (elements of the actual orbit are underlined):
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• .. (0, 0)(0, 1) (1, 0) (0, .

(0,_)(0,0)(0,_) (0,_)(1,0)(0,0) (0,0)(0,0)(0,Q) (0,0)(0,Q)(0,_)
(oo)(oo)(oo)(0, 1)(1,2)(2,1)J(,o)(oo)(0,)(o,0)(0,o)(o,).
(0,0) )(0,Q0) (0, )(1, 1)(1, 0) (0,1)(1,_)(1,) (0,0)(0,0)(0,_)

In the next step, each pair is again subjected to the substitution T. In general, the
pairs will be D-tuples, and the substitution will replace D-tuples by (k x k)-arrays
of D-tuples (for a k-Fermat cellular automaton). We now express this property as
a formal theorem.

Let D be a natural number, D > 1. We define an embedding t = t D of S(X) into
SD(X) as follows (SD(X) can be considered as the set of sequences with D-tuples
as values). For f(X) = Zjez fjX j E S(X) we define t(f) E SD(X) as

t(f)(X) = Z(fj-D+1,..,fj) Xj.
jEZ

We also define a projection p = PD : SD(X) -4 S(X) such that p o t(f) = f by

setting p (ZjFZ(sj,-D+1, Sj,-D+2,..., Sj,O) xJ) = EjEz Sj,O X3.

With these notions the work of several authors 7'8' 9 13"14 on fractals generated
by cellular automata can be summarized as

Theorem 3.2 If A :S(X) -- S(X) is a k-Fermat cellular automaton, then there
exists a D E N and a regular (k x k)-substitution T = (0iJ)iJ[k] : SD(X,Y) -
SD (X, Y) such that for all n c N and 1 E [k] we have

Ank+I (1 ) = p (al (t (A n (1))))

where ao is the k-substitution (4 iI)iE[k].
The interpretation in terms of fractals generated by cellular automata is clear.

If A is a k-Fermat cellular automaton, then the initial configuration 1 generates
an orbit. If the orbit is visualized by a graphical representation, one observes a
certain pattern. According to Theorem 3.2, the pattern can be described by a
(k x k)-substitution T = (0,,m) and by Theorem 2.4 the pattern is represented by a
compact subset. Moreover, for linear k-Fermat cellular automata it is known that
the limit set does not dependent on the initial configuration f E Sc(X).

4 Cellular automata, symmetries and invariants

It is worthwhile to study cellular automata with a local rule S 82 -* S which
exhibits certain symmetries 3,4

Definition 4.1 The map 4 : S2 -- S is called rotationally symmetric if
O(O(x, y), x) = y holds for all x, y E S. If 0 is rotationally symmetric and commu-
tative, i.e., O(x,y) = /(y,x), then 0 is called totally symmetric.
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The following geometric interpretation clarifies the definition. We represent the re-
lation z = q(x, y) as a triangular array zY , and call it an elementary O-configuration.
In geometric terms the rotational symmetry of € can be phrased as: Any rotation
(by ?2L) of an elementary O-configuration, changing zY into y or Y1, is an elementary
€-configuration.

The commutativity of ¢ implies the invariance of elementary q-configurations
under vertical reflection. Combined with the rotational symmetry of ¢ we can state
that € is totally symmetric if and only if the set of elementary q-configurations is
invariant under the symmetry group of the equilateral triangle.

Example 1.The local rule ¢ : Z 2 -+ Z 2 defined as q(x,y) = x + y is totally
symmetric.
2. Let F4 = {0, 1, C, 1 + (} denote the field with 4 elements. The local rule 4 :
F4 defined as q(x, y) = (x + (1 + ()y is rotationally symmetric but not totally
symmetric.
3.There exist rotationally symmetric local rules which are not related to linear
rules.

4

Definition 4.2 A O-configuration of size N is a top down equilateral triangular
array with N elements in the top row and with values in S such that any subtriangle
z is an elementary 0-triangle.

A q-configuration of size N is rotationally symmetric if the rotated 0-
configuration is equal to the 0-configuration.

A q-configuration of size N is totally symmetric if it remains unchanged under
the symmetry group of the equilateral triangle.

Figure 1 shows examples of O-configurations.

(a)(b

Figure 1. Examples of 0-configurations of size 21 for O(x, y) = x + y defined in Z 2.
(a): a nonsymmetric one, (b): a rotationally symmetric one, (c): a totally symmetric one.
(A black cell represents the value 1, a white cell the value 0).

Theorem 4.3 4 If o : S2 -+ S is rotationally symmetric and of the form O(x, y)
rx + sy, then there exist for any N E N a rotationally symmetric ,-configuration
of size N.

If 0 : S 2 -+ S is totally symmetric and of the form O(x, y) = rx + sy, then there
exists for any n E N a totally symmetric O-configuration of size N.
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As a next step we introduce invariants of cellular automata. The motivating
example for invariants is given by the k-Fermat cellular automata. Note that the
map 7rk : S(X) -+ S(X) is a special kind of k-substitution. In fact, the substitution
polynomial associated with 7rk is P,, (X) = id and Ak o 7rk = 7rk o A. It is therefore
natural to define

Definition 4.4 Let A : S -+ S be a cellular automaton. A k-substitution is called

k-invariant of A if Ako = 4oA. The set of all k-invariants of the cellular automaton
A is denoted by Invk (A). The substitution 4 is called a regular k-invariant of A if 4
is a k-invariant and regular. The set of regular k-invariants is denoted by Inv,(A).

Remark If k = 1, then the 1-invariants of a cellular automaton A with local
rule € : SD -+ S are given by Inv,(A) = S -+ S I €(((rl),.. .,(rD)) -

((¢(rl,...,rM)), rl,...,rD C S}.
For linear k-Fermat cellular automata the coefficients of the substitution poly-

nomial of a k-invariant 4 can be characterized via the local rule.

Theorem 4.5 If A is a linear k-Fermat cellular automaton, then Invk(A)

-7k Inv, (A).

Proof. Let f E S(X) and let R(X) j=o rjX jbe the local rule of A. Since

is a k-invariant, we have that R(X)k6(f) = 6(R(X)f(X)). Since R is k-Fermat,

-the left side becomes R(Xk)4(f) = R(Xk) (k-1) Xi(f)(Xk) (using the definition
of 4). Thus the coefficient of xkl+j,j E [k], in R(Xk)6(f) can be computed as
ro4j(ft) + rij(f-i1) + + rD4j(f1-D). On the other hand, the same coefficient
in 4(R(X)f(X)) turns out to be 6i(rofi + "". + rDfl-D), i.e. 6j o A = A o 4j.
Therefore, 4 is a k-invariant if and only if each 6j is a 1-invariant of A.

Example 1.For S =Z2 and R(X)= 1 + X, we have lnv(A) = {s '-* s, s - 0}
(s E S) and"Inv1 (A) = Invr (A). The automaton specified by this rule is 2n-Fermat
(for any n E N). Thus Inv' (A) contains 22 regular 2-invariant substitutions

0 -4 00, 1 - 00; 0 F-+,00, 1 '-* 10; 0 '-+ 00, 1 '-* 01 and 0 '-+ 00, 1 '-+ 11. Invr(A)
contains 24 regular 4-invariants, among which 0 '-+ 0000, 1 F-+ 1011.
2.For S = Z3 and R(X) = 2 + 2X, we have Inv,(A) = {s '-4 as + a,3/ E Z3}
and Inv'(A) = {s '+ as a a E Z 3}. Inv'(A) contains 33 regular k-invariants,
among which 0 F-4 000, 1 i-k 201, 2 F-+ 102.
3. R(X) = 1 + 3X E Z 6[X] defines a 2-Fermat automaton such that IInv1 (A) I = 54
and ]Invr (A)l = 18. Thus there are 21' regular 2-invariants.

In analogy with the substitution T introduced before Theorem 3.2, we associate
here with a linear k-Fermat automaton A, given by R(X) = s + rX, and a k-
invariant 4 G Inv,(A), a (k x k)-substitution T' = T (A,) S 2 (X, Y) -+ S 2 (X, Y).
Let (a,b) C 82 and consider the polynomials Qm(X) = R(X)m6(aX-l + b) =

EjZ z qj,.X j for m E [k]. For m E [k] the coefficients q-,m, qom,... , qk-lm of
Qm(X) are uniquely determined by a and b, thus these coefficients can be regarded
as functions from S2 to S. Therefore, the substitution T = (V),m)1,mE[k], defined
as

01,n : S S-+2

(a , b) q -, ~ ,b ), q l, m(a , b ))
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for 1, m E [k], is well defined and called the induced substitution.

Remark 1.If is a regular k-invariant, then the induced substitution PC is a
regular substitution.
2. If the local rule of a linear cellular automaton is given by the polynomial R(X) E
S[X], of degree d, and if is a regular k-invariant, then the induced substitution
is defined by maps from Sd+1 which are constructed in a similar manner as for the
case d = 1 considered above. (d + 1)-tuples are then replaced by a (k x k)-array
of (d + 1)-tuples.
3. If AO is any cellular automaton such that

AO(yZfjX y ) = E ¢(fj-d,...,fj)Xj

and with a k-invariant , then the above construction yields an induced substitu-
tion as well.

Example For S = Z 2 , the polynomial R(X) = 1 + X defines a 22-Fermat linear
cellular automaton A. By Example 1 following Theorem 4.5, we have that the
substitution defined by the polynomial PC (X) = id + OX + idX 2 + idX3 defines a
4-invariant of A. Consider a sequence ... zabed.•., then substitution transforms
this into the top row shown below:

.z~zz a Oaa b Obb c Occ...
zzOz+aaa a+bbb b+cccO..

Oz z+azOaa+ba O bb+cbOc.
z a aza b bab c cbc..

The other rows are part of the orbit generated with the given cellular automaton
rule starting from the first row. The induced substitution T6 can be read directly
from these rows: F (a, b) (b, 0) (0, b) (b, b)

(a, b) (0,,a+b) (a+b,b) (b,b) (b,0) ((a,a+b) (a+b,a) (a,0) (0, b) " (2)

(a, b) (b, b) (b, a) (a, b)

The following theorem is a straightforward generalization of Theorem 3.2. It
exploits the existence of k-invariants instead of the k-Fermat property.

Theorem 4.6 Let AO be a cellular automaton and let be a regular k-invariant and
let %PC = (Oij)iJE[k] be the induced k-substitution. There exists a natural number
D, and embedding t = t D, such that for f G S(X) with 6(f) = f and all n c N,
1 E [k] we have

Ank+ (f) = p ( _ (t(A n (f))))

where a1 is the k-substitution (Mi,)iG[k].
Proof Since is a k-invariant and f =(f), we have Akn(f) = Akn((f))

(An(f)) for all n E N. That proves the assertion for 1 = 0. Theassertion forl 0
follows from the definition of the induced substitution.
We illustate this theorem by continuing the above example, with S = Z2,
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R(X) = 1 + X and the 4-invariant which produces the following substitutions:

0 " 0000, 1 " 1011. Take f as the sequence which is the limit obtained from

applying this substitution to ... 0001011000... (the boldface element is at position

0). This yields the top row in

f ... 0001011000010111011000000000000000010111011 ...

A(f) ...000111010001100110100000000000000011100110 ...

Observe that f = (f). Theorem 4.6 states that, for example, row 6 (= 1 - 4 + 2)

in the orbit OA(f) can be obtained from A(f) displayed above , by imbedding this

last sequence in a sequence of pairs (corresponding to D - 2), as given by

•... (0, 1) (1, 1) (1, 1) (1, 0)(0, 1) (1, 0) (0, 0) (0, 0) (0,1)(1,1) (1, 1) ...

(the last (underlined) components in these pairs are the elements of A(f), the

first components are the ones that immediately precede them). Then apply the

substitutions displayed in row 2 of the induced substitution array '1 given above

(see(2): row 2 is actually the third row, as counting starts at zero). This gives

... (0, 1) (1, 0)(0,0) (0, 1) 1(1,0) (0, 1) (1, 0) (1, 1) 1(1,0) (0, 1) (1, 0) (1, 1) 1(1, 1) (1, 1) ...

The last components in these pairs form row 6 in OA (f). In a similar way, using row

I of the '1-substitution array, where 1 E {0, 1, 2, 3}, starting from the embedding

of row An(f) in a sequence of pairs, would produce row 4 . n + I in this orbit.

As a consequence of Theorem 2.4, we obtain

Corollary 4.7 If is a regular k-invariant of the cellular automaton A and if '1

is the induced substitution, then the sequence (jiwG(,I'(t(f))) is a Cauchy

sequence for all f E Sc(X).

As a final step, we combine the notion of symmetry of a cellular automaton with

the existence of induced substitutions. We are interested in the following problem.

Suppose fo,..., fg-i is the top row of a q-configuration of size N and assume that

the configuration is, e.g., rotationally symmetric. If is a regular k-invariant of

A0, then 6(E fiX j) gives anther top row of a 0-configuration of size kN; what are

the symmetry properties of the larger configuration?

Definition 4.8 Let A0 be a cellular automaton with local rule 4 : S 2 -4 S and let

the substitution = (WIE[k] be a k-invariant of A. The k-invariant is palindromic

if i = k--i holds for all i E [k].

The k-invariant is called rotationally symmetric if the induced substitution

- (01,m ) satisfies

p(Vt,o(a, b)) = p(Ok-1,i(a, b))

for all (a, b) E S 2 and all i E [k].

If E Invk (A) is palindromic and rotationally symmetric, then is called totally

symmetric.
An example of a rotationally symmetric 4-invariant is given by the example pre-

ceeding Theorem 4.6: the last components of the rightmost column in the '@f-array

equals the last components of its top row.
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Remark If = ( l) is a k-invariant for AO and q = ('-, m ) the induced sub-
stitution, then we have p(Oi,0(a, b)) = j(b) for i E [k] and there exist functions
pi E Abb(S), i C [k], such that P(Ok-1,i(a,b)) = pi(b). In particular, if is rota-
tionally symmetric, then we have pi = , for all i E [k].

Lemma 4.9 4 Let A be a cellular automaton with local rule S 2 
--+ S. If

f(X) C S[X] is of degree < N, then f(X) defines a rotationally symmetric 0-
configuration of size (N + 1) if and only if for the coefficients Oij of OA(f)(X, Y)
the equations Oi,o = ON,i hold for i = 0,.. . , N.

In the linear case a carefully performed substitution can preserve symmetries.

Lemma 4.10 Let AO be a cellular automaton with rotationally symmetric local
rule ¢(x, y) = rx + sy. If fo,..., fN-1 is a top row of a rotationally symmet-
ric q-configuration of size N and if 6 E Inv,(Ao) is rotationally symmetric, then
go,• •,gkN-1, where g(X) = ZjEzgjX = ( fXi), ist of:Z( ji=o i ), s the top row of

rotationally symmetric -configuration of size kN.
Proof Let f(X) = EN 1 fiX j and _0 = OA(f)(X, Y) = E ,jX'Yj its orbit. If
'1 denotes the induced (k x k)-substitution, then 'PC (Q) = E OjjXjY j is the orbit
of (f). It remains to prove that Oi,o = EkN-,i holds for all i = 0,..., kN - 1.

By Lemma 4.9, we have Oi,o = ON-1,i for i = 0,..., N - 1. Since is rota-
tionally symmetric, we have Ekj+l,o = 1(Oj,o) for kj + 1 E [Nk] and I E [k] and
E0kN-l,kj+l = I(ON-1,j) = l(Oj,o), which proves the assertion.
Lemma 4.10 remains true if rotationally symmetric is replaced by totally symmetric.

We can now establish the existence of fractals with prescribed symmetries.

Theorem 4.11 Let AO, with q(x, y) = rx + sy, define a cellular automaton with
a rotationally (totally) symmetric linear local rule. Let f(X) C S[X] of degree
< N define a rotationally (totally) symmetric O-configuration of size (N + 1)
and let E Inv,(Ap) be a regular rotationally (totally) symmetric k-invariant.
If '(OA(f)) = L2(OA(f)) denotes the embedding of the orbit OA(f) which replaces
(OA(f))j,i by ((OA(f))j-1,i, (OA(f))j,j), and if 1' denotes the induced substitution,
then the sequence

1k (1 1(2-1/2 G ( ,p ( t (O A (f ) ) ) ) n V)n '

where V is the equilateral triangle given by the points (0, 0), (1, 0) and (1/2, V//2)
(ordinate axis positively oriented downwards), is a Cauchy sequence. The limit,
denoted as X = X(f,6), is a compact set in V and X is rotationally (totally)
symmetric.
Proof By Theorem 2.4, the limit 1/knG(@(t(f))) exists and is contained in
[0, N + 1]2. The factor transforms the triangle {(x, y) c [0, N + 1]2 1 y _ x} into
an equilateral triangle of size 1. Since the limit is independent of the particular
graphical representation ("pixel-shape"), we can define y : S 2 \ {0} -+ 7( 2) by
setting 'y(s -,so) = U{(j, 0) 1sj 5 0;j = -1,0}. Then the rescaled version of
G y(T(t(f))) n V is rotationally (totally) symmetric for each n E N. Thus the
limit is rotationally (totally) symmetric.
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(a) (~

()(d)

Figure 2. Symmetric fractals generated by cellular automata. (a) and (b): states in
Z2 = {0, 1} with local rule O(x, y) = x + y and, for (a): with top row gener-
ated from the initial top-row configuration 1101101101 and the 16-substitution 0 F4
0000000000000000, 1 -4 0110011000000110,: for (b): initial configuration 0110110110
and 8-substitution 0 1-4 00000000, 1 -4 01111110. (c): states in F4 = {0, 1, C, 1 + (} =
{0, 1, 2, 3} with local rule O(x, y) = (x + (1 + C)y, initial state 0130 and 4-substitution
0 .-+ 0000, 1 -+ 1021, 2 -+ 2032, 3 i-* 3013. (d): states in Z 3 = {0, 1, 2}
with local rule O(x,y) = 2x + 2y, initial configuration 11011011 and 9-substitution
0 -4 000000000, 1 '-+ 002020200, 2 1-4 001010100. (a) and (c) are rotationally sym-
metric, (b) and (d) are totally symmetric. The Hausdorff dimensions are respectively
log 117/log 16 ; 1.717, log 36/log 8 z 1.723, log 13/log 4 z 1.850, log 54/log 9 ; 1.815.

Figure 2 shows a few examples of symmetric fractal limits obtained from rescaled
cellular automata orbits generated by a proper initial top-row configuration sub-
jected to a proper substitution as presented in the above theorem.
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5 Conclusions

The above described method allows one to construct fractals which reflect the local
rule of a cellular automaton as well as showing a global symmetry. Since these
fractals are generated by a (k x k)-substitution, these fractals can also be described
in terms of hierarchical iterated function systems, in particular by so called k-adic
HIFS8 . By introducing a transition matrix' for the generating substitution it is
possible to compute the fractal's box-counting dimension5'6 which coincides with
the Hausdorff dimension.
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